Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 24(3-4): 234-244, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28537502

RESUMO

Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide, as well as to collagen and fibrin. Cell viability of dental pulp stem cells in test materials was assessed over two weeks. Cells in selected test materials laden with dentin-derived growth factors were inserted into human tooth roots and implanted subcutaneously into immunocompromised mice. In vitro cell culture exhibited distinct differences between scaffold types, where viability was significantly higher in natural compared to synthetic materials. In vivo experiments showed considerable differences regarding scaffold degradation, soft tissue formation, vascularization, and odontoblast-like cell differentiation. Fibrin appeared most suitable to enable generation of a pulp-like tissue and differentiation of cells into odontoblasts at the cell-dentin interface. In conclusion, natural materials, especially fibrin, proved to be superior compared to synthetic scaffolds regarding cell viability and dental pulp-like tissue formation.


Assuntos
Materiais Biocompatíveis/química , Polpa Dentária/citologia , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Colágeno/química , Dentina/química , Feminino , Fibrina/química , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Odontoblastos/citologia , Polietilenoglicóis/química , Células-Tronco/citologia , Alicerces Teciduais/química
2.
Mol Pharm ; 12(9): 3358-68, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26266700

RESUMO

Eight-armed PEG, molecular mass 10 kDa, was functionalized with furyl and maleimide groups, respectively; the obtained macromonomers were cross-linked via Diels-Alder chemistry. The mesh size (ξ) of the prepared hydrogels was determined by swelling studies, rheology, and low field NMR spectroscopy. The in vitro release of fluorescein isothiocyanate labeled dextrans (FDs) and bevacizumab was investigated. The average mesh size (ξavg) increased from 5.8 ± 0.1 nm to 56 ± 13 nm during degradation, as determined by swelling studies. The result of the rheological measurements (8.0 nm) matched the initial value of ξavg. Low field NMR spectroscopy enabled the determination of the mesh size distribution; the most abundant mesh size was found to be 9.2 nm. In combination with the hydrodynamic radius of the molecule (Rh), the time-dependent increase of ξavg was used to predict the release profiles of incorporated FDs applying an obstruction-scaling model. The predicted release profiles matched the experimentally determined release profiles when Rh < ξavg. However, significant deviations from the theoretical predictions were observed when Rh ≥ ξavg, most likely due to the statistical distribution of ξ in real polymer networks. The release profile of bevacizumab differed from those of equivalently sized FDs. The delayed release of bevacizumab was most likely a result of the globular structure and rigidity of the protein. The observed correlation between ξ and the release rate could facilitate the design of controlled release systems for antibodies.


Assuntos
Inibidores da Angiogênese/metabolismo , Bevacizumab/metabolismo , Preparações de Ação Retardada/química , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Hidrogéis/química , Maleimidas/química , Sistemas de Liberação de Medicamentos , Fluoresceína-5-Isotiocianato/metabolismo , Polietilenoglicóis/química
3.
Mol Pharm ; 12(9): 3292-302, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26252154

RESUMO

The use of angiotensin receptor blockers (ARBs) for treatment of ocular diseases associated with neovascularizations, such as proliferative diabetic retinopathy, shows tremendous promise but is presently limited due to short intravitreal half-life. Conjugation of ARB molecules to branched polymers could vastly augment their therapeutic efficacy. EXP3174, a potent non-peptide ARB, was conjugated to branched poly(ethylene glycol) (PEG) and poly(amido amine) (PAMAM) dendrimers: 7.8 ligand molecules were tethered to each 40 kDa PEG molecule whereas 16.7 ligand molecules were linked to each PAMAM generation 5 dendrimer. The multivalent PEG and PAMAM conjugates blocked AT1R signaling with an IC50 of 224 and 36.3 nM, respectively. The 6-fold higher affinity of the multivalent ligand-conjugated PAMAM dendrimers was due to their unique microarchitecture and ability to suppress polymer-drug interactions. Remarkably, both polymer-drug conjugates exhibited no cytotoxicity, in stark contrast to plain PAMAM dendrimers. With sufficiently long vitreous half-lives, both synthesized polymer-ARB conjugates have the potential to pave a new path for the therapy of ocular diseases accompanied by retinal neovascularizations.


Assuntos
Dendrímeros/química , Sistemas de Liberação de Medicamentos , Imidazóis/farmacologia , Mesoderma/efeitos dos fármacos , Polímeros/química , Receptores de Angiotensina/química , Tetrazóis/farmacologia , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Células Cultivadas , Portadores de Fármacos/química , Meia-Vida , Imidazóis/química , Ligantes , Losartan , Mesoderma/citologia , Mesoderma/metabolismo , Poliaminas/química , Polietilenoglicóis/química , Ratos , Tetrazóis/química
4.
Eur J Pharm Biopharm ; 96: 217-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253504

RESUMO

Eight-armed PEG was functionalized with furyl and maleimide groups (8armPEG20k-Fur and 8armPEG20k-Mal); degradable hydrogels were obtained by cross-linking via Diels-Alder chemistry. To increase the stability to degradation, the macromonomers were modified by introducing a hydrophobic 6-aminohexanoic acid spacer between PEG and the reactive end-groups (8armPEG20k-Ahx-Fur and 8armPEG20k-Ahx-Mal). In an alternative approach, the number of reactive groups per macromonomer was increased by branching the terminal ends of eight-armed PEG with lysine (Lys) and Ahx residues (8armPEG20k-Lys-Ahx-Fur2 and 8armPEG20k-Lys-Ahx-Mal2). The hydrolytic resistance of the synthesized macromonomers was determined by UV spectroscopy; the obtained hydrogels were characterized by rheology and degradation studies. The degradation time of 5% (w/v) 8armPEG20k-Ahx hydrogels (28days) was twice as long as the degradation time of 5% (w/v) 8armPEG20k hydrogels (14days); this is explained by increased hydrolytic resistance of the maleimide group. Using dendritic 8armPEG20k-Lys-Ahx macromonomers substantially increased the stability of the resulting hydrogels; degradation of 5% (w/v) 8armPEG20k-Lys-Ahx hydrogels occurred after 34 weeks. 8armPEG20k hydrogels had the largest mesh size of all tested hydrogels, while hydrogels made from dendritic 8armPEG20k-Lys-Ahx macromonomers showed the smallest value. To evaluate their potential for the controlled release of therapeutic antibodies, the hydrogels were loaded with bevacizumab. The incorporated bevacizumab was released over 10 days (8armPEG20k) and 42days (8armPEG20k-Ahx), respectively; release from 8armPEG20k-Lys-Ahx hydrogels was not completed after 105 days. In summary, we believe that 8armPEG20k-Ahx or 8armPEG20k-Lys-Ahx hydrogels could serve as controlled release system for therapeutic antibodies such as bevacizumab.


Assuntos
Inibidores da Angiogênese/química , Bevacizumab/química , Hidrogéis/química , Polietilenoglicóis/química , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/análise , Bevacizumab/administração & dosagem , Bevacizumab/análise , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/análise , Preparações de Ação Retardada/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Furanos/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Maleimidas/química , Porosidade , Estabilidade Proteica , Viscosidade
5.
Eur J Pharm Biopharm ; 95(Pt B): 227-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26032290

RESUMO

More and more people worldwide are affected by severe eye diseases eventually leading to visual impairment or blindness. In most cases, the treatment involves the application of ophthalmic dosage forms such as eye drops, suspensions or ointments. Unfortunately, some of the therapeutic approaches have major shortcomings, especially in the treatment of the posterior segment of the eye, where many vision-threatening diseases originate. Therefore, research focuses on the development of new materials (e.g., for vitreous substitution) and more advanced drug delivery systems. Hydrogels are an extremely versatile class of materials with many potential applications in ophthalmology. They found widespread application as soft contact lenses, foldable intraocular lenses, in situ gelling formulations for ophthalmic drug delivery and ocular adhesives for wound repair; their use as vitreous substitutes and intravitreal drug delivery systems is currently under investigation. In this article, we review the different applications of hydrogels in ophthalmology with special emphasis placed on the used polymers and their suitability as ocular drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Hidrogéis , Administração Oftálmica , Animais , Oftalmopatias/tratamento farmacológico , Humanos , Preparações Farmacêuticas/administração & dosagem , Polímeros/química
6.
J Nutr Sci ; 4: e4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090101

RESUMO

Few data on apparent pre-caecal digestibility (APCD) of crude protein (CP) and particularly amino acids (AA) are available from studies with horses. Protein bound in cell walls (i.e. neutral detergent insoluble CP (NDICP)) is unlikely to be decomposed by digestive enzymes in the small intestine. In contrast the corresponding analytical fraction of neutral detergent soluble CP (NDSCP) (NDSCP = CP-NDICP) is likely to be available for auto-enzymatic digestion. A literature analysis on the relationship between NDICP/NDSCP and pre-caecal indigestible/digestible CP was carried out. There was a strong positive relationship between NDICP and pre-caecal indigestible CP, which suggests that NDICP can be used to estimate the part of protein that is not available for digestion in the small intestine. There was also a correlation between NDSCP and pre-caecal digestible protein. The slope of the linear regression line between NDICP and pre-caecal digestible CP was 0·9, suggesting an APCD of NDSCP of 90 %. Thus pre-caecal digestible CP may be predicted by multiplying NDSCP by 0·9. Because the literature identifies a similar AA profile in NDICP and NDSCP within a given feed the presented concept may preliminarily be transferred to AA. The proposed system can at any time be adapted to the scientific progress without altering its structure. Such adaptations would be necessary particularly when new knowledge exist on the distribution of AA onto NDICP/NDSCP, the APCD of individual AA from NDSCP, and the impact of feed processing and chewing on particle sizes and protein digestibility.

7.
J Mater Chem B ; 3(3): 449-457, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262047

RESUMO

Eight-armed poly(ethylene glycol) was functionalized with furyl and maleimide groups. The two macromonomers were cross-linked by Diels-Alder (DA) reactions and the degradation behavior of the formed hydrogels was investigated. UV spectroscopy showed that maleimide groups were subject to ring-opening hydrolysis above pH 5.5, with the reaction rate depending on the pH and temperature. As a result of this, the gelation kinetics and stiffness of DA hydrogels were dependent on the temperature and the pH of the cross-linking medium, as demonstrated by rheological experiments. The gel time varied between 87.8 min (pH 3.0, 37 °C) and 374.7 min (pH 7.4, 20 °C). Values between 420 Pa (pH 9.0, 37 °C) and 3327 Pa (pH 3.0, 37 °C) were measured for the absolute value of the complex shear modulus. Hydrogel swelling and degradation were influenced by the same parameters. With increasing pH and temperature the degradation time was reduced from 98 days (pH 7.4, 20 °C) to 2 days (pH 7.4, 50 °C); no degradation was observed at pH 3.0 and 5.5. Molecular modeling studies of the DA and retro-Diels-Alder (rDA) moieties revealed that hydrogel degradation occurred by rDA reaction followed by OH--catalyzed ring-opening hydrolysis of maleimide groups to unreactive maleamic acid derivatives.

8.
Macromol Biosci ; 15(3): 405-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25399803

RESUMO

The compatibility of selected cross-linking reactions with lysozyme is investigated. Michael-type additions of nucleophilic amino acids to maleimide, vinyl sulfone and acrylamide groups are detected by gel electrophoresis. The degree of modification depends on the polymer and the pH. Complete modification with more than five PEG chains is observed after incubation with mPEG5k-vinyl sulfone at pH 9, whereas 96% of the protein remains unmodified after incubation with mPEG5k-acrylamide at pH 4. Incubation with mPEG5k-thiol results in thiol-disulfide exchange reactions. Hydrogel preparation is simulated by using polymer mixtures. Protein modifications are detected, which may affect the protein structure, decrease activity and bioavailability, and increase the risk for immune responses.


Assuntos
Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Muramidase/química , Animais , Galinhas , Eletroforese em Gel de Poliacrilamida , Maleimidas/química , Modelos Moleculares , Polietilenoglicóis/química
9.
J Control Release ; 183: 67-76, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24680687

RESUMO

The reversible attachment of proteins to polymers is one potential strategy to control protein release from hydrogels. In this study, we report the reversible attachment of lysozyme to poly(ethylene glycol) (PEG) by degradable carbamate linkers. Phenyl groups with different substituents were used to control the rate of carbamate hydrolysis and the resulting protein release. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed modification with 1-3 PEG chains per lysozyme molecule. Protein PEGylation and PEG chain elimination occurred without changes in secondary protein structure, as demonstrated by circular dichroism spectroscopy. The lytic activity of lysozyme was restored to 73.4±1.7%-92.5±1.2% during PEG chain elimination. Attached PEG chains were eliminated within 24h to 28days, depending on the used linker molecule. When formulated into hydrogels, a maximum of about 60% of the initial dose was released within 7days to 21days. Linker elimination occurs 'traceless', so that the protein is released in its native, unmodified form. Altogether, we believe that tethering proteins by degradable carbamate linkers is a promising strategy to control their release from hydrogels.


Assuntos
Carbamatos/química , Portadores de Fármacos/química , Hidrogéis/química , Muramidase/administração & dosagem , Polietilenoglicóis/química , Carbamatos/síntese química , Dicroísmo Circular , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Estrutura Molecular , Polietilenoglicóis/síntese química , Estrutura Secundária de Proteína , Fatores de Tempo
10.
J Mater Chem B ; 1(37): 4855-4864, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261167

RESUMO

The Diels-Alder (DA) reaction was investigated as a cross-linking mechanism for poly(ethylene glycol) (PEG) based hydrogels. Two complementary macromonomers were synthesized by functionalizing star-shaped PEG with furyl and maleimide groups. Gel formation occurred in water at 37 °C; the gelation time ranged between 171 ± 25 min and 14 ± 1 min depending on the used hydrogel formulation. The complex shear modulus was dependent on the concentration, branching factor and molecular weight of the macromonomers; values between 2821 ± 1479 Pa and 37097 ± 6698 Pa were observed. Hydrogel swelling and degradation were influenced by the same parameters; the degradation time varied between a few days and several weeks. Gel dissolution was found to occur by retro-DA reaction and subsequent hydrolysis of maleimide groups. Calculations of the network mesh size revealed that the prepared hydrogels would be suitable for the controlled release of therapeutic proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...